

Blacktown Boys' High School 2018

HSC Trial Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- NESA approved calculators may be used
- All diagrams are not drawn to scale
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks: 100

Total marks: Section I – 10 marks (pages 2 – 5)

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II – 90 marks (pages 6 – 13)

- Attempt Questions 11 -16
- Allow about 2 hours and 45 minutes for this section

Assessor: E.Efimova

Student Name:	
Teacher Name:	

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2018 Higher School Certificate Examination.

BBHS 2018 HSC Mathematics Trial Examination

Office Use Only

Question	Mark
Q1	/1
Q2	/1
Q3	/1
Q4	/1
Q5	/1
Q6	/1
Q7	/1
Q8	/1
Q9	/1
Q10	/1
Q11 a)	/2
Q11 b) (i)	/1
Q11 b) (ii)	/1
Q11 c)	/2
Q11 d)	/2
Q11 e)	/2
Q11 f)	/2
Q11 g) (i)	/2
Q11 g) (ii)	/1
Q12 a) (i)	/1
Q12 a) (ii)	/1
Q12 a) (iii)	/2
Q12 a) (iv)	/1
Q12 a) (v)	/2
Q12 b) (i)	/1
Q12 b) (ii)	/2
Q12 c)	/2
Q12 d) (i)	/2
Q12 d) (ii)	/1
Q13 a) (i)	/1
Q13 a) (ii)	/1
Q13 a) (iii)	/2
Q13 b) (i)	/1
Q13 b) (ii)	/2
Q13 b) (iii)	/1
Q13 c)	/3
Q13 d)	/2
Q13 e)	/2

Question	Mark
Q14 a) (i)	/2
Q14 a) (ii)	/1
Q14 a) (iii)	/2
Q14 a) (iv)	/1
Q14 a) (v)	/1
Q14 b) (i)	/1
Q14 b) (ii)	/1
Q14 b) (iii)	/1
Q14 b) (iv)	/1
Q14 c) (i)	/1
Q14 c) (ii)	/2
Q14 c) (iii)	/1
Q15 a)	/3
Q15 b)	/3
Q15 c)	/2
Q15 d) (i)	/1
Q15 d) (ii)	/1
Q15 d) (iii)	/1
Q15 e) (i)	/1
Q15 e) (ii)	/3
Q16 a)	/3
Q16 b) (i)	/1
Q16 b) (ii)	/2
Q16 b) (iii)	/3
Q16 c) (i)	/4
Q16 c) (ii)	/2
Total	/100

-2-

Section I:

10 marks Attempt Questions 1–10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- Q1. Which of the following is equal to $\frac{1}{\sqrt{5}-1}$?
 - (A) $\sqrt{5} 1$
 - (B) $\frac{\sqrt{5} + 4}{4}$
 - (C) $\frac{\sqrt{5}-1}{4}$
 - $(D) \qquad \frac{\sqrt{5} 1}{\sqrt{5} + 1}$
- Q2. The quadratic equation $x^2 + 2x 3 = 0$ has roots α and β. What is the value of $\alpha\beta + (\alpha + \beta)$?
 - (A) -1
 - (B) 5
 - (C) -5
 - (D) 3
- Q3. Which inequality defines the domain of the function $\frac{3}{\sqrt{x-4}}$?
 - (A) x > 4
 - (B) $x \ge 4$
 - (C) x < 4
 - (D) $x \le 4$

Q4. What is the derivative of $\frac{x}{\sin x}$?

- (A) $\frac{x \cos x \sin x}{\sin^2 x}$
- (B) $\frac{\sin x + x \cos x}{\sin^2 x}$
- (C) $\frac{\cos x x \sin x}{\sin^2 x}$
- (D) $\frac{\sin x x \cos x}{\sin^2 x}$
- Q5. A parabola passes through the point (0,2) and has its vertex at (-2,0). The equation of the parabola is:

(A)
$$y^2 = -2(x+2)$$

(B)
$$x^2 = 2(x-2)$$

(C)
$$x^2 = -2(x+2)$$

(D)
$$y^2 = 2(x+2)$$

- Q6 What is the period of the function $f(x) = \tan(\frac{x}{2})$?
 - (A) $\frac{\pi}{2}$
 - (B) π
 - (C) 2π
 - (D) 4π

BBHS 2018 HSC Mathematics Trial Examination

Q7. The diagram shows the graph y = f(x).

Which of the following statements is true for x = t?

- (A) f'(t) > 0 and f''(t) < 0
- (B) f'(t) < 0 and f''(t) < 0
- (C) f'(t) > 0 and f''(t) > 0
- (D) f'(t) < 0 and f''(t) > 0

Q8. How many terms are in the series $27 + 40 + 53 + \cdots + 209$?

- (A) 4
- (B) 15
- (C) 14
- (D) 13

BBHS 2018 HSC Mathematics Trial Examination

Q9. The graph shown below could be:

- (A) $y = 3^x$
- (B) $y = (-3)^x$
- (C) $y = \left(\frac{1}{3}\right)^{x}$
- (D) $y = \left(-\frac{1}{3}\right)^x$

Q10. A particle is moving along the *x*-axis. The displacement of the particle at time *t* seconds is *x* metres.

At a certain time, $\dot{x} = -5 \text{ ms}^{-1}$ and $\ddot{x} = 12 \text{ ms}^{-1}$. Which statement describes the motion of the particle at that time?

- (A) The particle is moving to the right with increasing speed.
- (B) The particle is moving to the left with increasing speed.
- (C) The particle is moving to the right with decreasing speed.
- (D) The particle is moving to the left with decreasing speed.

Section II

90 Marks

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) Evaluate
$$\frac{3\pi(5-\sqrt{2})}{200}$$
 to three significant figures. 2

b) Differentiate:

(i)
$$2e^{2x}$$

(ii)
$$\log(5x-1)$$

c) Find the exact value of
$$\log_6 4 + 2 \log_6 3$$

d) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \cos 2x \, dx$$
 2

- e) Find the equation of the tangent to the curve $y = \ln(2x^2 1)$ at the point where x = 1
- f) Shade the region denoted by $(x-3)^2 + (y+2)^2 \ge 4$
- g) In a geometric series the 9th term is 96 and the 13th term is 384.
 - (i) What is the common ratio of the series?
 - (ii) What is the first term of the series?

End of Question 11

-7-

BBHS 2018 HSC Mathematics Trial Examination

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) The diagram below shows the points A(-5,3), C(1,1) and D(-4,-4). B is a point on the y-axis.

- (i) Find the gradient of AC.
- (ii) Find the midpoint M of AC.
- (iii) Show that equation of DM is 3x y + 8 = 0
- (iv) Find the coordinates of B, given that B lies on the line 3x y + 8 = 0
- (v) Hence, show that ABCD is a rhombus.
- b) (i) Express the discriminant of $x^2 + (3 + k)x + (2k + 6) = 0$ in terms of k.
 - (ii) Hence, find the values of k such that $x^2 (3+k)x + (2k+6) > 0$ for all values of x.
- c) Find the primitive function of $\frac{4x}{1+5x^2}$.
- d) (i) Show that $\frac{dy}{dx} = -\frac{x}{\sqrt{16 x^2}}$, given $y = \sqrt{16 x^2}$ 2
 - (ii) Hence, or otherwise, $\int \frac{4x}{\sqrt{16-x^2}}$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) O is the centre of a circle of radius 20 cm. \angle MON = $\frac{\pi}{5}$. l is the minor arc MN as shown in the diagram.

- (i) Find the length of l in terms of π .
- (ii) Find the area of the minor sector *MON*.
- (iii) Find the shaded area of the segment correct to 2 decimal places.

1

2

2

1

b)

Triangle $\triangle ABC$ has $\angle CAB = 90^{\circ}$. *D* lies on *BC* where $AD \perp BC$. Given that $\angle ACD = 34^{\circ}$,

- (i) Find the size of the angle ∠CAD. Give reasons.
- (ii) Prove that $\triangle DCA$ and $\triangle DAB$ are similar.
- (iii) Hence find the length of AD, if CD = 27cm and BD = 12cm.

Question 13 continues on page 10

BBHS 2018 HSC Mathematics Trial Examination

Question 13 (continued)

- c) The region bounded by the graph $f(x) = e^x + 3$, the lines x = 0, $x = \log_e 3$ and x-axis is rotated about the x-axis to form a solid of revolution. Find the volume generated.
 - A ball is dropped from a height of 4 m and bounces back to a height of $2 \cdot 3.6 m$. It continues to bounce, each time to a height $\frac{9}{10}$ of the previous height. How far will the ball travel before finally coming to rest.

3

e) Prove $\frac{1 + \tan \theta}{\sec \theta} - \frac{\csc \theta}{\cot \theta + \tan \theta} = \sin \theta$ 2

(15 marks) Use a SEPARATE writing booklet. **Question 14**

- Consider the curve $f(x) = x^3 12x + 5$. a)
 - Find any stationary points and determine their nature.
- 2

Find any points of inflexion. (ii)

Sketch this curve showing all key features.

2

For what values of x is $f'(x) \le 0$?

- 1
- Hence, find the maximum value for f(x) for $-2 \le x \le 5$.
- 1
- The displacement of a particle moving along x-axis is given by $x = -3t^2 + 6t + 10$, where t is the time in seconds.
 - Find the initial displacement of this particle. (i)

(ii)Find the velocity when t = 1.

- (iii) Show that acceleration of this particle is a constant.

Describe the motion of this particle.

- A pool is being drained and volume in litres of water, L, in the pool at c) time t minutes is given by the equation: $V = 120(40 - t)^2$
 - Find the initial volume of water in the pool. (i)

2

1

- At what rate is the water draining out of the pool when t = 8
- How long will it take for the pool to be completely empty?

(ii)

What is the bearing's temperature after 6 minutes?

(15 marks) Use a SEPARATE writing booklet. **Question 15**

Find all solutions of $2\cos^2 x + \sin x - 2 = 0$, where $0 \le x \le 2\pi$ a)

Use Simpson's rule, with five function values, to find an approximate 3 b) $\int_{0}^{\infty} 2^{x} dx$ round to 2 decimal places.

3

If $y = tan^5 x$ show $\frac{dy}{dx} = 5tan^4x - 5tan^6x$ 2 c)

d) A ball bearing with initial temperature of 32°C is placed in a freezer whose temperature is $0^{\circ}C$. The temperature of the bearing after t minutes is given by the formula $T = Ae^{-kt}$ and its graph is shown in the diagram.

Find the value of A. 1

Find the value of k to 4 decimal places.

End of Question 14

BBHS 2018 HSC Mathematics Trial Examination

Question 15 (continued)

e) The diagram shows the parabolas $y = 3x - x^2$ and $y = x^2 - 5x$. The parabolas intersect at the origin and the point *B*. The region between the two parabolas is shaded.

- (i) Find the x-coordinate of the point B.
- (ii) Find the area of the shaded region.

1

3

End of Question 15

BBHS 2018 HSC Mathematics Trial Examination

Question 16 (15 marks) Use a SEPARATE writing booklet.

- a) Find the sum of 10 terms of the series $\log_b 5 + \log_b 10 + \log_b 20 + \cdots$ 3 given that $\log_b 5 = 1.46$ and $\log_b 2 = 0.63$.
- b) Andrew borrows \$650000 from a bank. The loan is to be repaid in 20 years. The interest rate is 6% p. a. compounded monthly. There is no repayments for the first three months. Let A_n be the amount owing after n months and M be the monthly repayments.
 -) Find an expression for A_4 .
 - i) Show that $A_5 = 650000(1.005)^5 M(1 + 1.005)$

1

3

4

2

- (iii) Find the monthly repayments if the loan is to be repaid in 20 years.
- c) Two particles A and B start moving along the x-axis at time t = 0. Particle A is initially at x = 6 and its velocity at time t is given by $v_A = 3t^2 20t + 16$. Particle B is at x = 25 when t = 2 and its velocity at time t is given by $v_B = 3t^2 + 1$.
 - (i) Find expressions for the positions of particles A and B at time t.
 - (ii) Show that these two particles never meet.

BBHS 2018 HSC Mathematics Trial Examination

Q1	hud	ont	N	ıım	her:

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

$$2 + 4 =$$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A

DO

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

Start → 1. A O ВО CO DO Here A O ВО CO DO 3. A O ВО CO DO A O ВО CO DO A O ВО CO DO Λ \bigcirc вО CO DO A O ВО CO DO

-15-

	2018 Mathematics Trial Solutions	
Section I	Multiple - Choice	
@1	$\frac{B}{\frac{1}{\sqrt{5}-1}} = \frac{\sqrt{5}+1}{(\sqrt{5}-1)(\sqrt{5}+1)} = \frac{\sqrt{5}+1}{5-1} = \frac{\sqrt{5}+1}{4}$	Imark
Q2	$\frac{C}{2^{2}+2x-3} = 0$ $4\beta = -3 x+\beta = -2$ $-3-2 = -5$	lmask_
Q3	$\frac{A}{f(x)} = \frac{3}{\sqrt{x-4}}$ $x - 4 \ 70 \ \therefore \ x > 4$	Imark
Q4	$\frac{D}{\left(\frac{x}{\sin x}\right)' = \frac{2'\sin x - 2(\sin x)'}{\sin^2 x} = \frac{\sin x - x\cos x}{\sin^2 x}$	/ mark
Q5		lmark
Q6	$\frac{C}{f(x)} = \tan(\frac{x}{2})$ $period of f(x) = \tan x is \pi$ $\frac{x}{2} = \pi : x = 2\pi$	1 mark

	2018 Mathematics Trial Solutions	
Section I	Multiple - Choice	
Q7	B at the point $x = t$ $f'(t) < 0$ $f(x)$ is decreasing as x increases, gradient is negative $f''(t) < 0$ graph is concave down, the fraction is decreasing	1 mark
Q8	The gravitent of the function is decreasing $ \underline{B} $ $ AP: \alpha = 27, d = 13 $ $ T_n = 209, T_n = a + (n-1) d $ $ 209 = 27 + 13(n-1) $ $ n = 15$	Imark
99	$\frac{C}{y = (\frac{1}{3})^{x}} = \frac{-x}{3}$ exponential decay	/mark
Q10	Delocity is negative so particle is moving to the lett Acceleration is positive and since particle is moving to the lett it is slowing down	l mark

	2018 Mathematics Trial Solutions	
Section I	Question 11	
a)	$\frac{3\pi (5-\sqrt{2})}{200} = 0.168976 = 0.169$	Imark - correct decimal 2 marks - correct to 3 s.f.
b)(1)	$(2e^{2x})' = 4e^{2x}$ $(log(5x-1))' = \frac{5}{5x-1}$	i mark i mark
c)	lef 4 + 2/0f63 = /9f64+/0f69 = = /0f6(4x6) = 10f636 = 2	I mark to get legs (4x9) 2 marks- correct answer
d)	$\int_{-\infty}^{4\pi} \cos 2\pi e dx = \left[\frac{1}{2} \sin 2\pi \right]_{+}^{4\pi} =$ $= \frac{1}{2} \left(\sin \frac{\pi}{2} - o\right) = \frac{1}{2} \left(\sin \frac{\pi}{2} - o\right) = \frac{1}{2}$	I mark- correct interpration 2 marks- correct solution
e)	$y = \ln(2x^2 - 1) \text{ at } x = 1$ $\frac{dy}{dy} = \frac{4x}{2}$	imark- correct gradient
f J	$ \frac{d\pi}{dt} = \frac{2x^2 - 1}{t} $ $ \frac{d\pi}{dt} = \frac{2x^2 - 1}{t} $ $ \frac{d\pi}{dt} = \frac{4}{t} = \frac{4}{t} $ $ \frac{d\pi}{dt} = \frac{4}{$	2 marks - correct solution I mousk - correct graph of circle 2 marks - correct region
g)(i)	$GP : T_n = \alpha r^{n-1}$ $T_q = q x r^q = 96$ $T_{13} = \alpha r^{12} = 384$	Imark for correct expressions for both
(ii)	$\frac{T_{13}}{T_{9}} = r^{4} = 4 : r = \pm \sqrt{2}$ $T_{n} = \alpha r^{n-1}$ $96 = \alpha(\sqrt{2})^{8} \text{ or } 96 = \alpha(\sqrt{2})^{8} = \alpha r$ $\therefore q = 6$	Tg and Tis 2 marks - Greet ratio

	2018 Mathematics Trial Solutions	No.
Section I	Question 12	
oy (i)	Gradient of $H = \frac{3-1}{-5-1} = -\frac{2}{6} = -1$	Imark
(ii)	Midpoint $M = \left(\frac{-5+1}{2}, \frac{3+1}{2}\right) = (-2, 2)$	Imark
(iii)	Use $y-y_1 = m(x-x_1)$ $m = \frac{-4^2-2}{-4^2-(-2)} = \frac{-6^2}{-2} = 3^2$, $m = 3$ y-2 = 3(x+2) y-2 = 3x+6	I mark - SUBStitute COVECT COOPED nates and gradient Zmarks -
(iv)	3x - y + 8 = 0 Substitute $x = 0$ in equation $3x - y + 8 = 0$: $y = 8$	i marte correct
(v)	Midpoint of $BD = \left(\frac{0+(-4)}{2}, \frac{8+(-4)}{2}\right) = (-2, 2)$	y-coordinate Imark
	Since B and D both lie on perpendicular bisector of AC and the midpoint of BD is equal to the midpoint of AC, then the diaponals AC and BD bisect each other at right amples. i. ABCD is a rhombus	2 mærks for correct proof.

	2018 Mathematics Trial Solutions	
Section I	Question 12	
b)(i)	$z^{2} + (3+k)x + (2\kappa+6) = 0$ $\Delta = b^{2} - 4\alpha c$ $(3+k)^{2} - 4x I(2\kappa+6) =$ $= 9^{2} + 6k + k^{2} - 8k - 24 =$ $= k^{2} - 2k - 15$	Imark for correct discriminant
(11)	A < 0 K ² - 2K - 15 < 0 (K - 5)(K + 3) < 0 K = - 3, K = 5 - 3 < K < 5	I mark for correct factorising 2 marks - correct answer
9	$f(\pi) = \frac{4x}{1+5x^2}$	
dies	$\int \frac{f'(x)}{f(x)} dx = \log f(x) + C$ $\int \frac{4x}{1+5x^2} = \frac{4}{10} - \log(1+5x^2) + C =$ $= \frac{2}{5} \log(1+5x^2) + C$	i mark for Integration and getting log (1+5x²) 2 marks - correct so I ution
d)a)	$\frac{dy}{dx} = \frac{1}{2} (16 - x^2)^{-\frac{1}{2}} x (-2x) = \frac{x}{\sqrt{16 - x^2}}$	1 mark for correctly using the Chain rule 2 marks - Correct solution
<i>(ii)</i>	from (i) 5 42 dr=4/16-x2+C	Imourk - Correct Solution

	2018 Mathematics Trial Solutions	
Section I	Question 13	
a)(i) (ii) (iii)	How $\ell = rQ = 20 \times \frac{\pi}{5} = 4\pi \text{ cm}$ $\ell = 40 \times \frac{\pi}{5} = 8.106. = 8.11 \text{ cm}^2$	I mark I mark I mark I mark Correct expression for area of sepment sepment Correct answer
6)(1)	LCAD + LACD + CADC = 180° (angle sum of a triangle) < CAD = 180° - 90° - 34° = 56°	I mark-correct answer
(ii)	In A DCA and A DAB L DAB + L CAD = 90 (complementary) L DAB = 90°-56°=34° L DAB = L ACD LADC = LADB = 90° A DCA is similar to A DAB (equilangular)	Imork - to prove LDAB=LACD= 34° 2 marks - correct proof and reasoning
(iii)	CD = AD (corresponding AD are in sides of similar triangles proportion) AD = 27 × 12 = 324: AD = 18 am	I mark- correct unswer
	Server	

	2018 Mathematics Trial Solutions	
Section I	Question 13	
c)	$f(x) = e^{x} + 3, x = 0, x = log_{e3}$ $\int_{\pi} (e^{x} + 3)^{2} dx = 0$	
	$= \pi \int (e^{2x} + 6e^{x} + 9) dx =$ $= \pi \int \frac{e^{2x}}{2} + 6e^{x} + 9x \int_{0}^{\log 3} =$ $= \pi \int \frac{e^{2\log 3}}{2} + 6e^{\log 3} + 9 \log 3 -$ $- \pi \int \frac{1}{2} + 6 =$	I mark to correct formula (10teptal) ot volume 1 marks for correct in tegration
	$= \pi \left[\frac{9}{2} + 6x3 + 9 \log 3 \right] - \frac{13}{2}\pi =$ $= \pi \left[\frac{9}{2} + 18 - \frac{13}{2} + 9 \log 3 \right] =$ $= \pi \left[16 + 9 \log 3 \right]$	3-marks for correct Solution
<i>d)</i>	Total distance = = $4.0 + 2(3.6 + 3.24 +) m$ Infinite geometric series $q = 3.61$, $r = 0.9$ $S = \frac{9}{1-r} = \frac{3.6}{0.1} = 36 m$	I mark for correct limiting sum 2 mark - for correct solution
e)	Total clistance = $4+2x36 = 76m$ $\frac{1+\tan\theta}{\sec\theta} = \frac{\cos e c\theta}{\cot\theta + \tan\theta} = \sin\theta$ LHS: $1+\frac{\sin\theta}{\cos\theta} = \frac{1}{\cos\theta}$	
	$LHS: 1+ \frac{Sin\Theta}{\cos\Theta} - \frac{1}{Sin\Theta}$ $= \frac{\cos\Theta + \sin\Theta}{\cos\Theta} - \frac{\cos\Theta}{\sin\Theta} + \frac{\sin\Theta}{\cos\Theta} = \frac{\cos\Theta + \sin\Theta}{\cos\Theta} = \frac{\cos\Theta - \sin\Theta}{\sin\Theta \cos\Theta} = \frac{\cos\Theta + \sin\Theta}{\sin\Theta \cos\Theta} = \frac{\cos\Theta + \sin\Theta}{\sin\Theta \cos\Theta} = \frac{\sin\Theta}{\sin\Theta}$	I mark for substituting sin 0 and 1086 correctly Zmark for correct proof

= cos Q + sin Q - cos Q = sin Q (RHS)

	2018 Mathematics Trial Solutions	
Section I	Question 14	
a)(i)	Stationary points $f'(x) = 0 x^3 - 12x + 5 = 0$ $f'(x) = 3x^2 - 12$ $3x^2 - 12 = 0 3(x^2 - 4) = 0$. x = -2, 2 $f(-2) = (-2)^3 - 12(-2) + 5 = 21$	1 mark for stat. points (-2,21) (2,-11)
	$f(2) = 2^3 - 12x2 + 5 = -11$ $f(2) = 2^3 - 12x2 + 5 = -11$ f(2) = 15 $f(2) = 15f(2) = 15$ $f(2) = 15f(2) = 15$	2 marks for identity ap thernature correctly
(ii)	(2,-11)-10ca/min $f''(x)=0$ and $f''(x)$ chaupes sign $f''(x)=6x$ $6x=0:.x=0$ $x-1=0$ $+''(x)=6$ 0 0 0 0 0 0 0 0 0 0	Imark fer correct point of intlexion
(iii)	So (0,5) is a point of intlexion 121	1 mark - covrect features 2 mark - Correct sketch

	2018 Mathematics Trial Solutions	
Section I	Question 14	
a)(iv)	f'(x) = 0 - curve is decreasing (from graph) $f = 2 \le x \le 2$	Imark
(V)	when $-2 \le x \le 5$ $f(5) = 5^3 - 12x5 + 5 = 70$ f(-2) = 21 f(5) > f(-2) So f(5) - is a max. value	1 mark
b) (i)	t=0 $x=10$	Imark
(ii)	x=-6++6 +=1 x=0	1 mark
(ili)	2c = -6 - 1s a constant	1 mark
(ir)	The particle is initially at a position lon to the right of O(origin) and travelling to the right. It's slowing clown and comes to test after Isec. It then moves back to the left.	lmark
c) (i)	$V = 120(40-t)^2$ at $t = 0$ $V = 120 \times 40^2 = 192000L$	1 mark
(ii)	$\frac{dV}{dt} = 120 \times 2(40-t) \times (-1) = 240t - 9600$ $t = 8 \frac{dV}{dt} = 240 \times 8 - 9600 = -7680 \frac{1}{600}$	rate of change formula 2 marks -
(iii)	240 t - 9600 = 0 240 t = 9600 t = 40 min	correct rate 1 mark correct time

2018 Mathematics Trial Solutions		
Section I	Question 15	
a)	$2\cos^{2}x + \sin x - 2 = 0$ $2(1 - \sin^{2}x) + \sin x - 2 = 0$ $2 - 2\sin^{2}x + \sin x - 2 = 0$ $2\sin^{2}x - \sin x = 0$ $\sin x (2\sin x - 1) = 0$ $\sin x = 0 : x = 0, \pi, 2\pi$ $\sin x = \frac{1}{2} : x = \frac{\pi}{6}, \frac{5\pi}{6}$	Imark - Correct equations of sin z: Sin x = D Sin x = ½ 2 marks - one correct Solution 3 marks - all solutions provided.
6)	$\int_{2}^{6} 2^{2} dx = \int_{2}^{7} 2^{2} dx + \int_{2}^{7} 2^{2} dx = $ $= \frac{4-2}{6} \left[2^{2} + 4 \left(2^{3} \right) + 2^{4} \right] + $ $+ \frac{6-4}{6} \left[2^{4} + 4 \left(2^{5} \right) + 2^{6} \right] = \frac{260}{3}$ $= 86.67 \left(2 d.p. \right)$	Imark-correct function value Zmarks - Correct USP of Simpson's
c)	y = tan se dy = 5tan 4 x x sec 2 x olo = 5tan 4 x x (1+tan 2 x) = = 5tan 4 x + 5tan 6 x	i mark- for applying the chain rule correctly 2 marks- correct solution
d)(i)		1 mark
(ii)	$T=32e^{-kt}$ When $t=2$, $T=16$ $16=32e^{-2k}$ $0.5=e^{-2k}$ $16=32e^{-2k}$ $16=32e^{-2$	(correct answer)
(iii)	7=32.e k+6 = 4°C = 0.3466	Imark

2018 Mathematics Trial Solutions		
Section I	Question 15	3
e)(i)	$2x^{2} - 8x = 0$ $2x = (x - 4) = 0$ $x = 0, x = 4$ $x = 0 $ so origin, so $x = 4$ is	Imark for correct answer
(11)	Areq = $\int (3x - x^2) - (x^2 - 5x) dx$ = $\int (-2x + 8x) dx =$ = $\left[-\frac{2}{3}x^3 + 4x^2 \right]^9 =$ = $-\frac{2}{3}x64 + 64 = 64 - \frac{128}{3} = \frac{64}{3}$	1 mark for correct formula 2 marks for correct interpration

racea nameno en mo	2018 Mathematics Trial Solutions	
Section I	Question 16	
a)	$ eg_b 5 + log_b _0 + log_b 20 +$ $AP: \alpha = log_b 5,$ $d = log_b _0 - log_b 5 = log_b 2$ $S_n = \frac{n}{2} (2a + (n-1)d)$ $S_{10} = \frac{10}{2} (2log_b 5 + (10-1)log_b 2) =$ $= 5(2x1.46 + 9x0.63) = 42.95$	I mark - correct stem and common difference. 2 marks - substituting all values correctly 3 marks source t- solution
b) (i)	$A_2 = 650000(1.005)^{-1}$ $A_3 = 650000(1.005)^{-3}$ $A_4 = 650000(1.005)^{-4}$ $A_4 = 650000(1.005)^{-4}$	Imark
(15)		Imark 2 marks Imark Show; no geomethic Series 2 marks - correct we of sum to n terms of GP formula 3 marks - correct Solution

	2018 Mathematics Trial Solutions	10000000
Section I	Question 16	
c) (i)	$x_{A} = \int (3+^{2}-20+16)dt =$ $= +^{3}-10+^{2}+16+C,$ When $t = 0$ $x = 6$: $6 = 0-0+0+C, :: C_{i} = 6$ $x_{A} = t^{3}-10+2+16+6$	imark- correct integration to find a position lar particle A 2 marks -
	$x_B = \int (3t^2 + 1) dt = t^3 + t + C_2$ when $t = 2$ $x = 25$ $25 = 8 + 2 + C_2$ $C_2 = 15$	for correct points of one particle 3 marks - correct substitution of t and oc
(i1)	$\mathcal{X}_{\mathcal{B}} = t^3 + t + 15$ $\mathcal{X}_{\mathcal{A}} = \mathcal{X}_{\mathcal{B}}$	4 marks ter correct expressions for both particles
	$t^{3}-10t^{2}+16t+6=t^{3}+t+15$ $-10t^{2}+15t-9=0$ $10t^{2}-15t+9=0$ $A = b^{2}-4ac$ $A = 225-4x10x9=-135$ $A < 0$ Since $10t^{2}-15t+9=0$ has $A < 0$, it has no real roots, i.e. $x_{H} \neq x_{B}$ (The particles never meet)	I mark - Correct quadratic equation 2 marks - negative observiminant and correct reasoning.
	The personal state of the state	